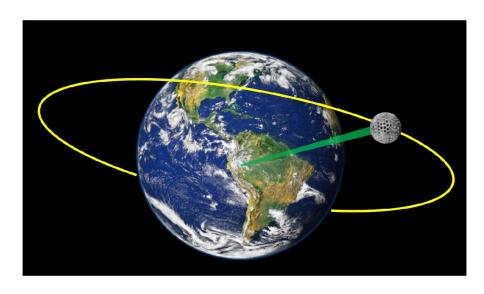
Laser Ranging Beyond Lunar Distances

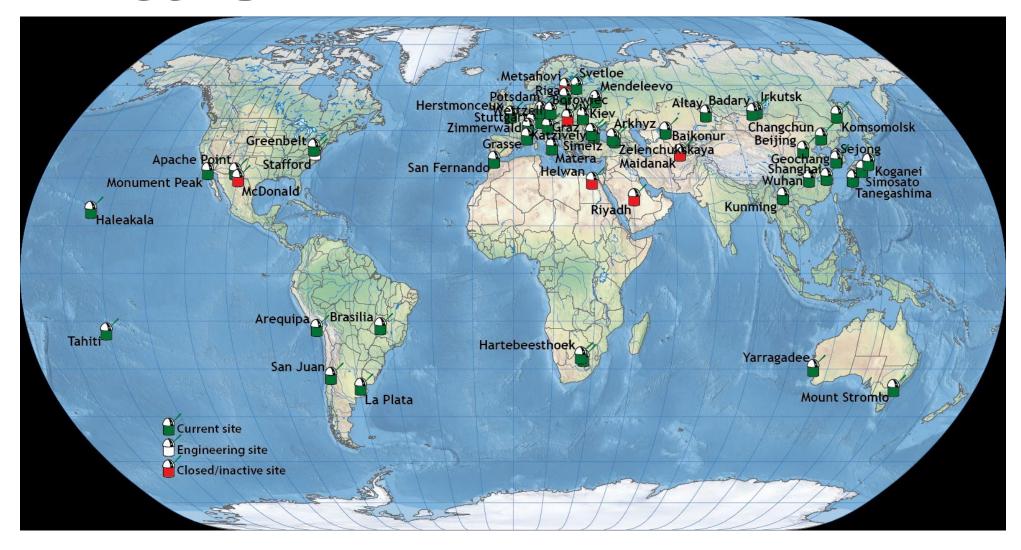
Evan Hoffman

NASA Goddard Space Flight Center

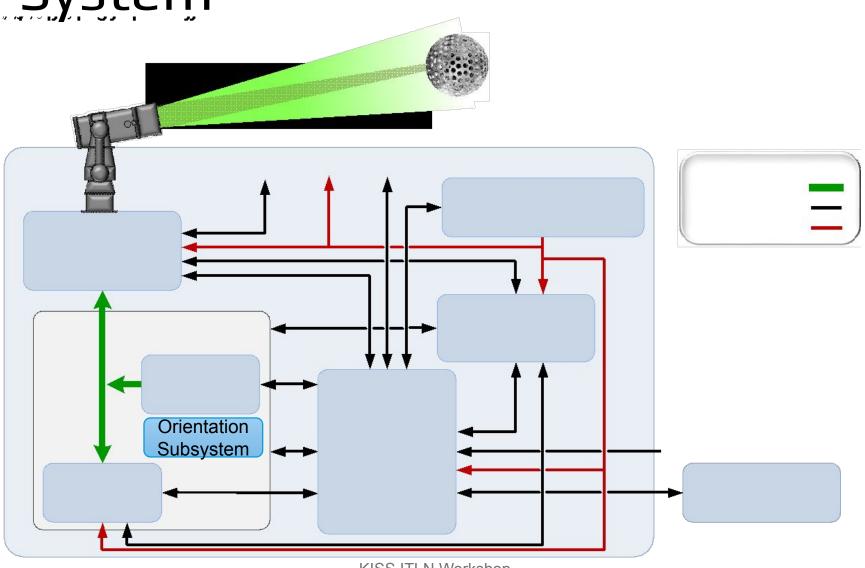

Satellite Laser Ranging

- Fire a short laser pulse to a satellite equipped with a retro-reflecting mirror
- Time when the laser pulse leaves the station
- Laser pulse reflects off the mirror back towards the station
- Time when the laser pulse is received
- Correct for atmospheric delay, system delay, measurement reference point
- Range measurement!

No electronics on the space segment


1-2 mm precision measurements

Centimeter-level accuracy orbits



SLR Network

Typical Parts of an SLR System

The mean number of photons detected (n_s) can be modeled as:

$$n_{s} = \frac{E_{t}}{h\nu} \eta_{t} \frac{2}{\pi (\theta_{d}R)^{2}} e^{-2(\frac{\Delta\theta_{p}}{\theta_{d}})^{2}} \frac{1}{1 + (\frac{\Delta\theta_{j}}{\theta_{d}})^{2}} \frac{\sigma A_{r}}{4\pi R^{2}} \eta_{r} \eta_{c} T_{a}^{2} T_{c}^{2}$$

The mean number of photons detected (n_s) per laser pulse can be modeled as:

$$n_{s} = \frac{E_{t}}{h\nu} \eta_{t} \frac{2}{\pi(\theta_{d}R)^{2}} e^{-2(\frac{\Delta\theta_{p}}{\theta_{d}})^{2}} \frac{1}{1 + (\frac{\Delta\theta_{j}}{\theta_{d}})^{2}} \frac{\sigma A_{r}}{4\pi R^{2}} \eta_{r} \eta_{c} T_{a}^{2} T_{c}^{2}$$

Photons in laser pulse

E_t -> energy (joules) of laser pulse

h -> Planck's constant

v -> frequency of light

The mean number of photons detected (n_s) per laser pulse can be modeled as:

$$n_{s} = \frac{E_{t}}{h\nu} \eta_{t} \frac{2}{\pi(\theta_{d}R)^{2}} e^{-2(\frac{\Delta\theta_{p}}{\theta_{d}})^{2}} \frac{1}{1 + (\frac{\Delta\theta_{j}}{\theta_{d}})^{2}} \frac{\sigma A_{r}}{4\pi R^{2}} \eta_{r} \eta_{c} T_{a}^{2} T_{c}^{2}$$

Efficiency of transmitting optics (%)

The mean number of photons detected (n_s) per laser pulse can be modeled as:

$$n_{s} = \frac{E_{t}}{h\nu} \eta_{t} \frac{2}{\pi (\theta_{d}R)^{2}} e^{-2(\frac{\Delta\theta_{p}}{\theta_{d}})^{2}} \frac{1}{1 + (\frac{\Delta\theta_{j}}{\theta_{d}})^{2}} \frac{\sigma A_{r}}{4\pi R^{2}} \eta_{r} \eta_{c} T_{a}^{2} T_{c}^{2}$$

Transmitter (laser) gain θ_d -> half angle divergence of laser $\Delta\theta_p$ -> beam pointing error R -> range

The mean number of photons detected (n_s) per laser pulse can be modeled as:

$$n_{s} = \frac{E_{t}}{h\nu} \eta_{t} \frac{2}{\pi (\theta_{d}R)^{2}} e^{-2(\frac{\Delta\theta_{p}}{\theta_{d}})^{2}} \frac{1}{1 + (\frac{\Delta\theta_{j}}{\theta_{d}})^{2}} \frac{\sigma A_{r}}{4\pi R^{2}} \eta_{r} \eta_{c} T_{a}^{2} T_{c}^{2}$$

Pointing Jitter factor θ_d -> half angle divergence of laser $\Delta\theta_i$ -> laser pointing jitter

The mean number of photons detected (n_s) per laser pulse can be modeled as:

$$n_{s} = \frac{E_{t}}{h\nu} \eta_{t} \frac{2}{\pi (\theta_{d}R)^{2}} e^{-2(\frac{\Delta\theta_{p}}{\theta_{d}})^{2}} \frac{1}{1 + (\frac{\Delta\theta_{j}}{\theta_{d}})^{2}} \frac{\sigma A_{r}}{4\pi R^{2}} \eta_{r} \eta_{c} T_{a}^{2} T_{c}^{2}$$

Return energy factor σ > optical cross-section of reflector

A_r-> effective receiver area R -> range

The mean number of photons detected (n_s) per laser pulse can be modeled as:

$$n_{s} = \frac{E_{t}}{h\nu} \eta_{t} \frac{2}{\pi (\theta_{d}R)^{2}} e^{-2(\frac{\Delta\theta_{p}}{\theta_{d}})^{2}} \frac{1}{1 + (\frac{\Delta\theta_{j}}{\theta_{d}})^{2}} \frac{\sigma A_{r}}{4\pi R^{2}} \eta_{r} \eta_{c} T_{a}^{2} T_{c}^{2}$$

Receiver efficiency factors η_r -> receiver optics efficiency η_c -> detector counting efficiency

The mean number of photons detected (n_s) per laser pulse can be modeled as:

$$n_{s} = \frac{E_{t}}{h\nu} \eta_{t} \frac{2}{\pi (\theta_{d}R)^{2}} e^{-2(\frac{\Delta\theta_{p}}{\theta_{d}})^{2}} \frac{1}{1 + (\frac{\Delta\theta_{j}}{\theta_{d}})^{2}} \frac{\sigma A_{r}}{4\pi R^{2}} \eta_{r} \eta_{c} T_{a}^{2} T_{c}^{2}$$

Atmospheric Factors

T_a-> Atmospheric attenuation

T_c -> cirrus cloud attenuation

Assumption: Photon detection is a Poisson process

$$P = \frac{\lambda^k e^{-\lambda}}{k!}$$

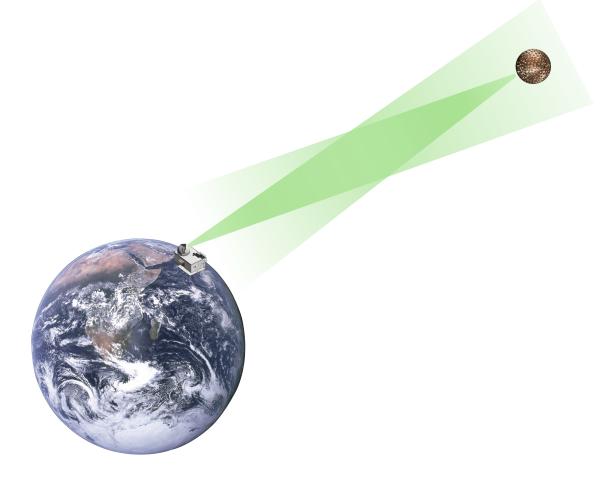
Probability of detecting k photons with an average detection rate of λ photons per laser shot

Return Rate		P(k=0) "No return"	P(k=1) "Single Photon detect"	P(k>=2) "Multiphoton detect"	% of detects that are Multiphoton
1%	0.010	0.99	0.010	0.00005	0.5%
5%	0.051	0.95	0.049	0.001	2.5%
10%	0.105	0.9	0.095	0.005	5.2%
20%	0.223	0.8	0.179	0.021	10.7%
40%	0.511	0.6	0.306	0.094	23.4%
60%	0.916	0.4	0.367	0.233	38.9%
80%	1.609	0.2	0.322	0.478	60.0%
99.9%	6.910	0.001	0.007	0.992	99.3%
99.99%	9.210	0.0001	0.001	0.999	99.9%

2025-09-22 KISS ITLN Workshop 13

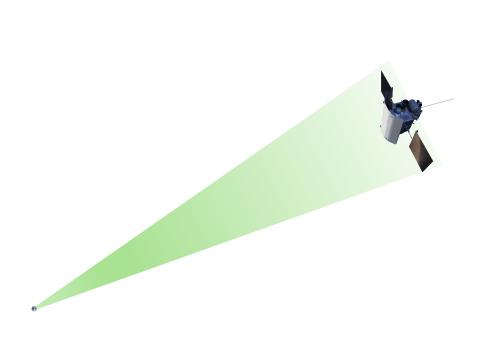
$$n_{s} = \frac{E_{t}}{h\nu} \eta_{t} \frac{2}{\pi (\theta_{d}R)^{2}} e^{-2(\frac{\Delta\theta_{p}}{\theta_{d}})^{2}} \frac{1}{1 + (\frac{\Delta\theta_{j}}{\theta_{d}})^{2}} \frac{\sigma A_{r}}{4\pi R^{2}} \eta_{r} \eta_{c} T_{a}^{2} T_{c}^{2}$$

Signal strength gains for 1 way links are very large

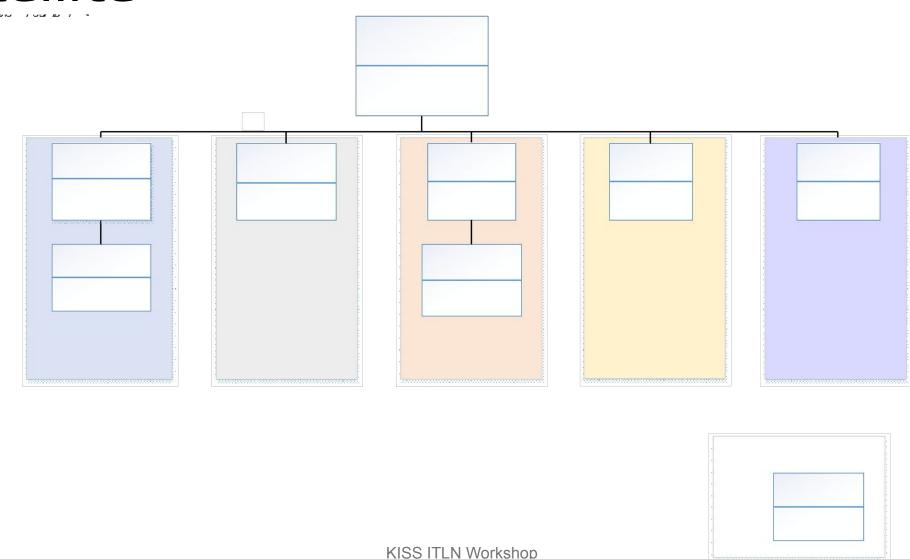

Instead of 1/r^4, becomes 1/r^2

1-Way Link Equation, Space to Space

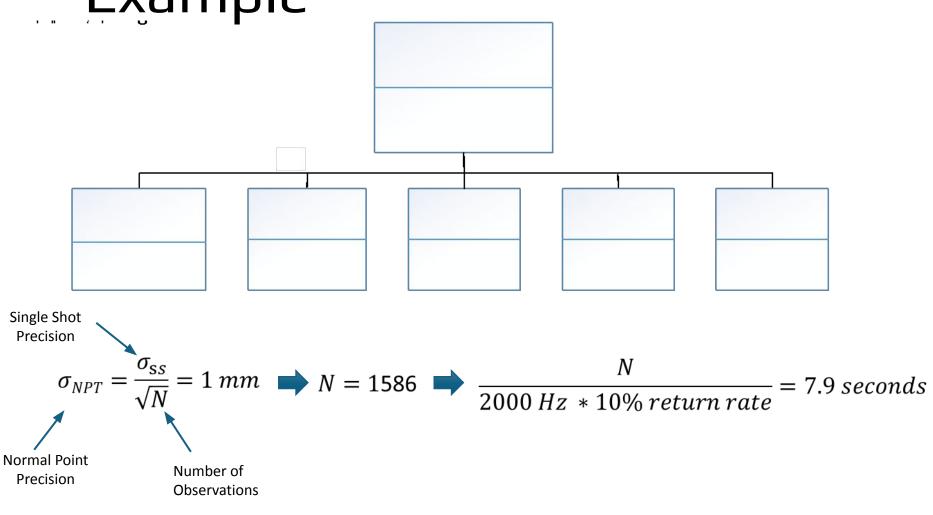
$$n_{s} = \frac{E_{t}}{h\nu} \eta_{t} \frac{2}{\pi (\theta_{d}R)^{2}} e^{-2(\frac{\Delta\theta_{p}}{\theta_{d}})^{2}} \frac{1}{1 + (\frac{\Delta\theta_{j}}{\theta_{d}})^{2}} \frac{\sigma A_{r}}{4\pi R^{2}} \eta_{r} \eta_{c} T_{a}^{2} T_{c}^{2}$$


Neglecting atmospheric effects further increases signal

Link Example – Two Way


Laser Pulse Energy	1.5 mJ
Full Beam Divergence	20 arcseconds
Transmit Optics Efficiency	77%
Receive Optics Efficiency	54%
Detector Counting Efficiency	28%
Effective Receive Aperture	0.187m^2
Satellite Optical Cross Section	7.6 Mm^2
Satellite Range	5995 km
Mean Photons Received	6.68

Link Example – One Way



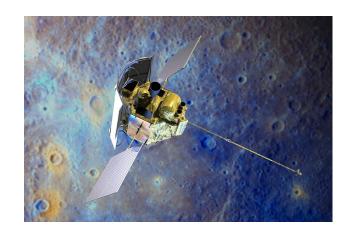
Laser Pulse Energy	1.5 mJ
Full Beam Divergence	20 arcseconds
Transmit Optics Efficiency	77%
Receive Optics Efficiency	54%
Detector Counting Efficiency	28%
Effective Receive Aperture	0.187m^2
Satellite Range	52659108 km
Mean Photons Received	6.68

Error Budget Example for LAGEOS Satellite

Precision Error Budget Example

Challenges of Transponder Experiments

- Clock Synchronization and modeling
- Knowledge of spacecraft location in a reference frame
- Knowledge of laser pulse reference to center of mass of spacecraft
- Orientation/Pointing at AU distances
 - Point ahead/behind
 - Link feedback and correction
 - Possible attitude change of the spacecraft to move receiver field of view
- Instrument (Laser) Lifetime
- Sensitivity of, or Deconfliction with other instruments

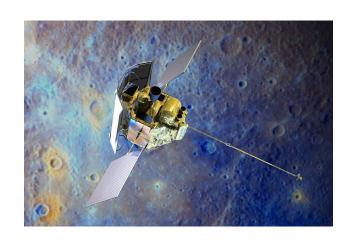

1 Way Ranging

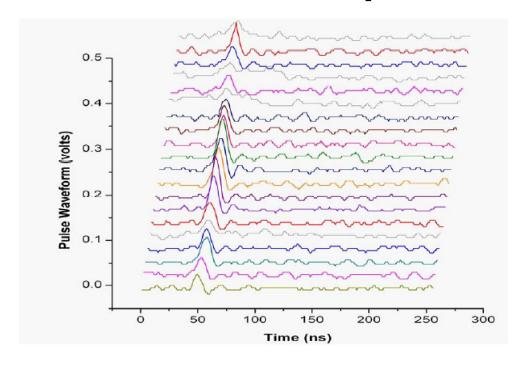
Experiments

Mars Global Surveyor (MGS)

MESSENGER

Lunar Reconnaissance Orbiter (LRO)




JASON-2

2025-09-22 KISS ITLN Workshop 21

MESSENGER (Earth to Mercury)

Parameter	Laser link solution	Spacecraft ephemeris	Difference
Range (m)	23,964,675,433.9 ± 0.2	23,964,675,381.3	52.6
Range rate (m s ⁻¹)	4,154.663 ± 0.144	4,154.601	0.062
Acceleration (mm s ⁻²)	-0.0102 ± 0.0004	-0.0087	-0.0015
Time (s)	71,163.729670967 \pm 6.6 \times 10 ⁻¹⁰	71,163.730019659	0.000348692
Clock drift rate (ppb)	$1.00000001559 \pm 4.8 \times 10^{-10}$	1.0000001564	-3.2×10^{-10}

Mars Global Surveyor

Transmitter, Signal and Link Summary

•Pulse width 10 nsec

• Pulse rate: 49 Hz

• Transmitted Pulse pattern:

-Scan 1 6 pulses on, 6 pulses off

-Scan 2 Continuous 49 Hz

• Beam divergence ~100 urad

Pointing accuracy ~5-10 urad

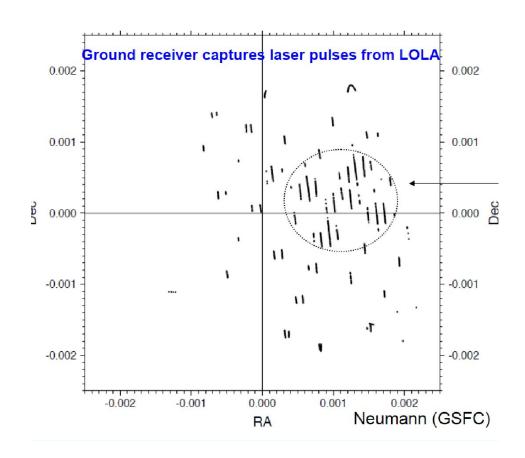
• Earth to MGS distances: 80.107 -> 80.103 Mkm

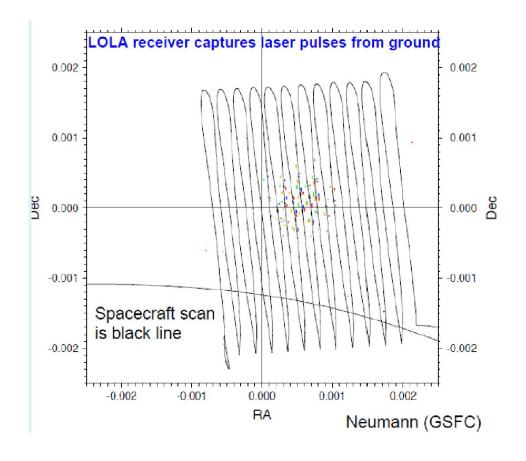
• Light travel time: 267.2 seconds (4.45 minutes)

Beam diameter at Mars
 8100 km

•Transmitted Energy: 10 mJ, Scan 1

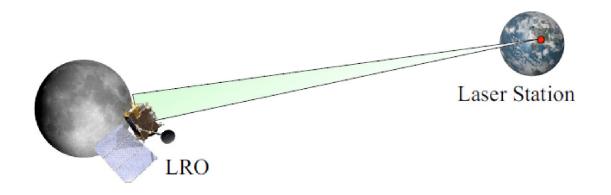
11 mJ, Scan 2


Lunar Reconnaissance Orbiter

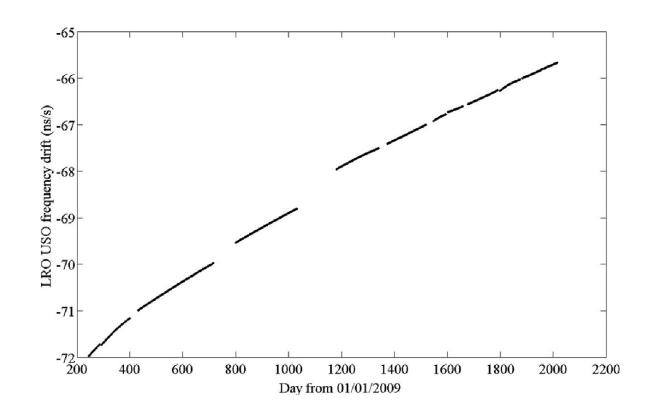


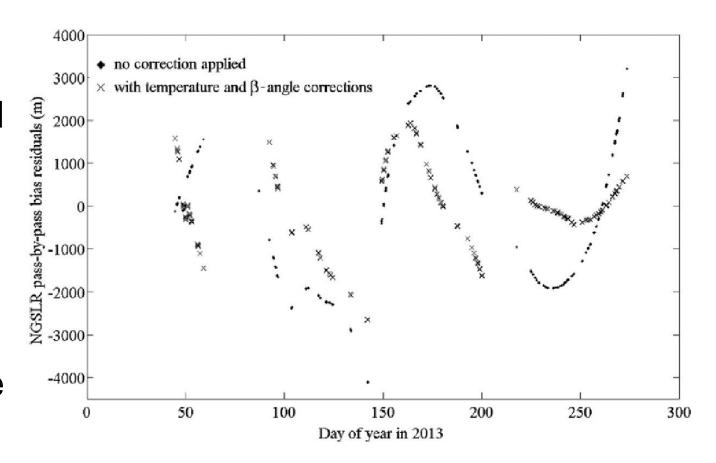
The mean RMS for the measurement residuals of the LR and radiometric data.

Data type	Gravity model	Mean RMS of S band range data (m)	Mean RMS of S band Doppler data (cm/s)	Mean RMS of LR data (m)
S band data only	GRGM900C	19.527	0.630	n/a
	LLGM-2	18.643	0.700	n/a
	SGM150J	21.337	0.668	n/a
LR data only	GRGM900C	n/a	n/a	0.251
	LLGM-2	n/a	n/a	0.334
	SGM150J	n/a	n/a	0.319
S-band and LR data	GRGM900C	35.132	0.697	2.757
	LLGM-2	34.794	0.861	6.412
	SGM150J	35.679	0.810	2.964


Lunar Reconnaissance Orbiter

Mao et al.


$$R = \left(T_{LOLA_receive}^{MET} * \delta_f + T_{LOLA_receive}^{MET}^{2} * \alpha_f + \delta t_{offset} - T_{transmit}^{UTC}\right) * c$$


$$T_{LOLA_receive}^{UTC} = \left(T_{LOLA_receive}^{MET} + \delta t_{range_walk}\right) * \left(1 + \delta_f\right)$$
$$+ T_{LOLA_receive}^{MET} {}^2 * \alpha_f + \delta t_{offset},$$

$$\delta t_{range_walk} = 6 - \sqrt{6^2 + \left(p \times \left(\Delta t_{pulse_width} - 1\right)\right)^2}$$

- Oven-Controlled Crystal Oscillator < 10^12 per hour
- Offset from UTC and drift due to aging and temperature effects
- Events on the spacecraft (e.g. Ka-band data downlink) can influence temperature

- Modeling temperature and B-angle reduced bias residuals in range from 1760m to 910m in this sample
- Still very large
- Lesson: Better models are not a replacement for more stable clocks

Summary

- One-way ranging presents several challenges (and a few benefits) over two-way ranging
- Beyond lunar distances, only one-way ranging is practical
- We need stable, traceable clocks
- We need robust lasers with a useful mission lifetime and 'short enough' pulse
- Defining proper science goals/requirements is key to assess feasibility

References

Abshire, J.B.; Sun, X.; Neumann, G.; McGarry, J.F.; Zagwodzki, T.; Jester, P.; Riris, H.; Zuber, M.; Smith, D. Laser pulses from earth detected at Mars. In Proceedings of the 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, Long Beach, CA, USA, 21–26 May 2006; Optica Publishing Group: Washington, DC, USA, 2006; pp. 1–2

Dandan Mao, Jan F. McGarry, Erwan Mazarico, Gregory A. Neumann, Xiaoli Sun, Mark H. Torrence, Thomas W. Zagwodzki, David D. Rowlands, Evan D. Hoffman, Julie E. Horvath, James E. Golder, Michael K. Barker, David E. Smith, Maria T. Zuber, The laser ranging experiment of the Lunar Reconnaissance Orbiter: Five years of operations and data analysis, Icarus, Volume 283, 2017, Pages 55-69, ISSN 0019-1035, https://doi.org/10.1016/j.icarus.2016.07.003.

Degnan, J.J., "Millimeter accuracy satellite laser ranging: a review", Contributions of Space Geodesy to Geodynamics: Technology, Geodynamics Series, D.E. Smith and D.L. Turcotte (Eds.), AGU Geodynamics Series, 25, pp. 133-162, 1993.

Degnan JJ. Multipurpose Laser Instrument for Interplanetary Ranging, Time Transfer, and Wideband Communications. *Photonics*. 2023; 10(2):98. https://doi.org/10.3390/photonics10020098

Mazarico, E., Sun, X., Torre, JM. *et al.* First two-way laser ranging to a lunar orbiter: infrared observations from the Grasse station to LRO's retro-reflector array. *Earth Planets Space* **72**, 113 (2020). https://doi.org/10.1186/s40623-020-01243-w

McGarry, J., Torrence, M., Mao, D., Skillman, D., Clarke, C., Horvath, J., Smith, D.E., Zuber, M., Sun, X., Neumann, G., "The First ILRS Laser Transponder Mission: Laser Ranging to NASA's Lunar Reconnaissance Orbiter (LRO)," Proceedings of the 17th International Workshop on Laser Ranging, Bad Kötzting, Germany, May 16-20, 2011, URL: http://cddis.gsfc.nasa.gov/lw17/docs/presentations/session13/01c-McGarry_LRO-LR_Results.pdf

Neumann, G & Cavanaugh, John & Coyle, D. & Mcgarry, Jan & Smith, David & Sun, Xiaoli & Torrence, M & Zagwodski, T & Zuber, M. (2006). Laser ranging at interplanetary distances.

Smith DE, Zuber MT, Sun X, Neumann GA, Cavanaugh JF, McGarry JF, Zagwodzki TW. Two-way laser link over interplanetary distance. Science. 2006 Jan 6;311(5757):53. doi: 10.1126/science.1120091. PMID: 16400141.

