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• Fire a short laser pulse to a satellite 
equipped with a retro-reflecting mirror

• Time when the laser pulse leaves the 
station

• Laser pulse reflects off the mirror back 
towards the station

• Time when the laser pulse is received
• Correct for atmospheric delay, system 

delay, measurement reference point
• Range measurement!

No electronics on the space segment

1-2 mm precision measurements

Centimeter-level accuracy orbits

Satellite Laser Ranging
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SLR Network
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Typical Parts of an SLR 
System

Orientation 
Subsystem
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2-Way Link Equation from Ground 
Station

The mean number of photons detected (ns) can be modeled 
as:
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2-Way Link Equation from Ground 
Station

The mean number of photons detected (ns) per laser pulse can be modeled 
as:

Photons in laser pulse
Et -> energy (joules) of laser pulse
h ->  Planck’s constant
𝜈 ->  frequency of light
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2-Way Link Equation from Ground 
Station

The mean number of photons detected (ns) per laser pulse can be modeled 
as:

Efficiency of transmitting optics 
(%)
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2-Way Link Equation from Ground 
Station

The mean number of photons detected (ns) per laser pulse can be modeled 
as:

Transmitter (laser) gain
θd -> half angle divergence of laser
Δθp -> beam pointing error
R -> range
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2-Way Link Equation from Ground 
Station

The mean number of photons detected (ns) per laser pulse can be modeled 
as:

Pointing Jitter factor
θd -> half angle divergence of laser
Δθj -> laser pointing jitter
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2-Way Link Equation from Ground 
Station

The mean number of photons detected (ns) per laser pulse can be modeled 
as:

Return energy factor
σ > optical cross-section of reflector

Ar-> effective receiver area
R -> range
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2-Way Link Equation from Ground 
Station

The mean number of photons detected (ns) per laser pulse can be modeled 
as:

Receiver efficiency factors
ηr -> receiver optics efficiency
ηc -> detector counting efficiency
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2-Way Link Equation from Ground 
Station

The mean number of photons detected (ns) per laser pulse can be modeled 
as:

Atmospheric Factors
Ta-> Atmospheric attenuation
Tc -> cirrus cloud attenuation
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Return 
Rate

P(k=0)
“No return”

P(k=1)
“Single Photon 
detect”

P(k>=2)
“Multiphoton 
detect”

% of detects that 
are Multiphoton

1% 0.010 0.99 0.010 0.00005 0.5%
5% 0.051 0.95 0.049 0.001 2.5%
10% 0.105 0.9 0.095 0.005 5.2%
20% 0.223 0.8 0.179 0.021 10.7%
40% 0.511 0.6 0.306 0.094 23.4%
60% 0.916 0.4 0.367 0.233 38.9%
80% 1.609 0.2 0.322 0.478 60.0%
99.9% 6.910 0.001 0.007 0.992 99.3%
99.99% 9.210 0.0001 0.001 0.999 99.9%

Assumption: Photon 
detection is a Poisson 
process
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1-Way Link Equation from Ground 
Station

Signal strength gains for 1 way links are very large

Instead of 1/r^4, becomes 1/r^2
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1-Way Link Equation, Space to Space

Neglecting atmospheric effects further increases signal
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Link Example – Two Way

Laser Pulse Energy 1.5 mJ
Full Beam Divergence 20 arcseconds
Transmit Optics Efficiency 77%

Receive Optics Efficiency 54%

Detector Counting Efficiency 28%

Effective Receive Aperture 0.187m^2

Satellite Optical Cross Section 7.6 Mm^2
Satellite Range 5995 km
Mean Photons Received 6.68
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Link Example – One Way

Laser Pulse Energy 1.5 mJ
Full Beam Divergence 20 arcseconds
Transmit Optics Efficiency 77%

Receive Optics Efficiency 54%

Detector Counting Efficiency 28%

Effective Receive Aperture 0.187m^2

Satellite Range 52659108 km
Mean Photons Received 6.68
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Error Budget Example for LAGEOS 
Satellite
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Precision Error Budget 
Example

 

Normal Point 
Precision Number of 

Observations

Single Shot 
Precision
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Challenges of Transponder Experiments

• Clock Synchronization and modeling
• Knowledge of spacecraft location in a reference frame
• Knowledge of laser pulse reference to center of mass of 
spacecraft

• Orientation/Pointing at AU distances  
• Point ahead/behind
• Link feedback and correction
• Possible attitude change of the spacecraft to move receiver field of 

view
• Instrument (Laser) Lifetime
• Sensitivity of, or Deconfliction with other instruments
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1 Way Ranging 
Experiments

Lunar 
Reconnaissance 
Orbiter (LRO)

Mars Global 
Surveyor (MGS)

MESSENGER

JASON-2
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MESSENGER (Earth  to Mercury)
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Mars Global Surveyor

Transmitter,  Signal and Link Summary

•Pulse width 10 nsec
• Pulse rate: 49 Hz
• Transmitted Pulse pattern:

–Scan 1 6 pulses on, 6 pulses off
–Scan 2 Continuous 49 Hz

• Beam divergence ~100 urad
• Pointing accuracy ~5-10 urad 
• Earth to MGS distances: 80.107 -> 80.103 Mkm
• Light travel time: 267.2 seconds (4.45 minutes)  
• Beam diameter at Mars 8100 km
•Transmitted Energy: 10 mJ, Scan 1

11 mJ, Scan 2
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Lunar Reconnaissance Orbiter
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Lunar Reconnaissance Orbiter
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Clock Synchronization Example: LRO
Mao et al.

2025-09-22 KISS ITLN Workshop 26



Clock Synchronization Example: LRO
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Clock Synchronization Example: LRO

• Oven-Controlled Crystal 
Oscillator < 10^12 per 
hour

• Offset from UTC and drift 
due to aging and 
temperature effects

• Events on the spacecraft 
(e.g. Ka-band data 
downlink) can influence 
temperature
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Clock Synchronization Example: LRO

• Modeling temperature and 
B-angle reduced bias 
residuals in range from 
1760m to 910m in this 
sample

• Still very large
• Lesson: Better models are 
not a replacement for 
more stable clocks
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Summary

• One-way ranging presents several challenges (and a few 
benefits) over two-way ranging

• Beyond lunar distances, only one-way ranging is practical
• We need stable, traceable clocks
• We need robust lasers with a useful mission lifetime and ‘short 
enough’ pulse

• Defining proper science goals/requirements is key to assess 
feasibility
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Thank you!
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